
PIGMENTO: PIGMENT-BASED IMAGE ANALYSIS AND EDITING 1

Pigmento: Pigment-Based Image Analysis and
Editing

Jianchao Tan, Stephen DiVerdi, Jingwan Lu, Yotam Gingold

Abstract—The colorful appearance of a physical painting is determined by the distribution of paint pigments across the canvas, which we
model as a per-pixel mixture of a small number of pigments with multispectral absorption and scattering coefficients. We present an
algorithm to efficiently recover this structure from an RGB image, yielding a plausible set of pigments and a low RGB reconstruction error.
We show that under certain circumstances we are able to recover pigments that are close to ground truth, while in all cases our results
are always plausible. Using our decomposition, we repose standard digital image editing operations as operations in pigment space
rather than RGB, with interestingly novel results. We demonstrate tonal adjustments, selection masking, cut-copy-paste, recoloring,
palette summarization, and edge enhancement.

Index Terms—Painting, color, RGB, non-photorealistic editing, NPR, kubelka-munk, pigment, paint, mixing, layering, image, editing.

F

1 INTRODUCTION

Stated generally, a “painting” in the physical world is a two-
dimensional arrangement of material. This material may be
oil or watercolor paint, or it may be ink from a pen or marker,
or charcoal or pastel. These pigments achieve a colorful
appearance by virtue of how they absorb and reflect light
and their thickness. Kubelka and Munk [1], [2] described a
model for the layering of physical materials, and Duncan [3]
extended it to include homogeneous mixing. In this model,
the appearance of a material (reflectance and transmission of
light) is defined by how much it scatters and absorbs each
wavelength of light and its overall thickness. These models
are widely used to model the appearance of paint, plastic,
paper, and textiles; they have been used previously in the
computer graphics literature [4], [5], [6], [7].

When painting, artists choose or create a relatively small
set of pigments to be used throughout the painting. We
call this set the primary pigment palette. We assume that all
observed colors in the painting are created by mixing or
layering pigments from the palette.

When we view a painting, either directly with our
eyes or indirectly after digitizing it into a three-channel
RGB image, we observe only the overall reflectance and
not the underlying material parameters. In RGB-space, the
underlying pigments which combine to form the appearance
of a pixel are not accessible for editing. One color in the
palette cannot be easily changed or replaced. Translucent
objects, common in paintings due to the mixing of wet paint,
cannot be easily extracted or inserted.

We propose an approach to decompose a painting into
its constituent pigments in two stages. First, we compute
a small set of pigments in terms of their Kubelka-Munk
(KM) scattering and absorption parameters. Second, we
compute per-pixel mixing proportions for the pigments

• J. Tan and Y. Gingold are with George Mason University.

• S. DiVerdi and J. Lu are with Adobe Research.

that reconstruct the original painting. We show that this
decomposition has many desirable properties. Particularly
for images of paintings, it is able to achieve lower error
reconstructions with smaller palettes than previous work.
Furthermore, the decomposition enables image editing appli-
cations to be posed in pigment space rather than RGB space,
which can make them more effective or more expressive.
We demonstrate tonal adjustments by editing pigment
properties; recoloring; selection masking; copy-paste; palette
summarization; and edge enhancement.

Thematically, this work is similar to Lillicon [8] and
Project Naptha [9], which both present ways to interpret
structure in unstructured documents to enable high level
edits based on the interpreted structure. In Lillicon’s case, the
structure is an alternate vector representation of the artwork,
while in Project Naptha, the structure is styled text within
the image. Our contribution is to apply this strategy to flat,
unstructured RGB images of paintings, which are created via
a complex structure (physical pigments and brush strokes).
Our analysis allows us to interpret the complex structure
of the painting from the RGB image, which enables editing
operations based on that structure.

2 RELATED WORK

Our work is inspired by the recent efforts of Tan et al. [10],
Lin et al. [11], Aksoy et al. [12] and Zhang et al. [13] to
decompose an arbitrary image into a small set of partially
transparent layers suitable for RGB compositing. Tan et
al. [10] use RGB-space convex hull geometry to extract a
palette, and then solve an optimization problem to extract
translucent layers for the Porter-Duff “over” compositing
operator (alpha compositing), which is the standard color
compositing model. Lin et al. [11] extract translucent layers
from images and videos based on an additive color mixing
model. They use locally linear embedding, which assumes
that each pixel is a linear combination of its neighbors. Aksoy
et al. [12] extract translucent layers from images, also based
on an additive color mixing model. However, unlike Tan et

PIGMENTO: PIGMENT-BASED IMAGE ANALYSIS AND EDITING 2

0.0

1.0

2.0

3.0

4.0

5.0

6.0

405 445 485 525 565 605 645 685

0.0

0.2

0.4

0.6

0.8

1.0

1.2

405 445 485 525 565 605 645 685

0.0

0.2

0.4

0.6

0.8

1.0

405 445 485 525 565 605 645 685

Ab
so

rp
tio

n
Sc

at
te

rin
g

R
efl
ec
ta
nc
e

Fig. 1: Analysis and editing of Monet’s “Impression, soleil levant.” From left to right, input image, extracted palette in RGB,
multispectral coefficient curves for palette pigments, mixing weights, recoloring, and cut-copy-paste.

al. [10] and Lin et al. [11], each layer’s color varies spatially.
Zhang et al. [13] use a clustering-based method to extract
palette colors and then decompose the entire image into a
linear combination of them. This is a similar representation
as the additive mixing layers from Lin et al. [11] and Aksoy
et al. [12]. All of these decompositions allow users to edit
the image in a more intuitive manner, effectively segmenting
the image by color and spatial coherence. Similarly, Chang
et al. [14] extract a small palette of colors from an image
and implicitly model each pixel as a mixture of those palette
colors to enable image recoloring using radial basis functions.
We extend these results specifically for physical paintings
by using a physically-inspired model of pigment mixing
(Kubelka-Munk) and estimating multispectral (greater than
RGB) pigment properties.

Our work is contemporaneous with Aharoni-Mack et
al. [15], who decompose watercolor paintings into linear
mixtures of a small set of primary pigments also using
the Kubelka-Munk mixture model. The primary differences
between our approaches is that they target (translucent)
watercolor paintings and use 3-wavelength (RGB) parameters
with varying thickness, while we evaluate our approach
with (opaque) acrylic and oil paintings and compute an
8-wavelength constant-thickness decomposition. They sim-
ilarly use a convex-hull in color-space to identify palette
colors. Both methods regularize the problem at least in
part with spatial smoothness. Both methods leverage ex-
isting datasets of measured Kubelka-Munk scattering and
absorption parameters (3-wavelength watercolor pigment
parameters from Curtis et al. [4] versus 33-wavelength acrylic
parameters from Okumura [16]).

Algorithmically, our work is most similar to that of
Kauvar et al. [17], which optimizes a set of multispectral
illuminants and linear mixing weights to reproduce an
image. This is suitable for their scenario (choosing projector
illuminants) but not for mimicking physical paintings. The
nonlinear nature of the Kubelka-Munk equations makes our
problem much harder.

While the Kubelka-Munk (KM) equations [1] can be used
to reproduce the color of a layer of pigment, the pigment
coefficients are difficult to acquire [16], so researchers have
pursued a simplified model. Curtis et al. [4] use a three
wavelength model they compute from samples of paint

Fig. 2: Comparing mixing models. Left: A gradient interpo-
lating between purple and green pigments using the KM
equation, and the resulting colors in RGB-space. Right: A
gradient interpolating the same pigment colors in RGB-space.

over white and black backgrounds. In our multispectral
scenario given RGB data and a fixed background, direct
extraction is ill-posed. The IMPaSTo system [5] uses a low
dimensional approximation of measured pigments to enable
realtime rendering. In contrast, we focus on the problem
of decomposing existing artwork. Xu et al. [18] use a
neural network to learn to predict RGB colors from a large
number of synthetic examples. RealPigment [6] estimates
composited RGB colors from exemplar photos of artist color
mixing charts. In our scenario, we are given the RGB colors
and estimate the multispectral scattering and absorption
parameters.

There is extensive work on multispectral acquisition
systems using custom hardware [19]. Berns et al. [20] use
a standard digital camera with a filter array. Parmar et
al. [21] use a bank of LED’s to capture the scene under
different illumination spectra. Park et al. [22] optimize a
set of exposures and LED illuminants to achieve video
rates. Multispectral images have many useful applications.
Ibrahim et al. [23] demonstrate intrinsic image reconstruc-
tion and material identification. Berns et al. [24] compare
a multispectral imager to a point spectrophotometer for
measurements of paintings. Multispectral imaging provides
a non-invasive way to preserve paintings and analyze their
construction. Liang et al. [25] used a combination of optical
coherence tomography (OCT) imaging with multispectral

PIGMENTO: PIGMENT-BASED IMAGE ANALYSIS AND EDITING 3

Absorption Curve (a)

Scattering Curve (s)

Reflectance Curve (r)
RGB

Color Matching
Function

+

Illuminant

Gamma Correction

KM Model

� : RL ! R3Color Rendering

Fig. 3: Rendering from multispectral KM coefficients (absorp-
tion and scattering) to sRGB color, for cyan pigment, totalling
33 wavelengths ranging from 380nm to 700nm (every 10nm).
It is rendered on pure white substrate with pigment thickness
equal to 1, under D65 illuminant.

imaging to identify pigments’ reflectance, absorption, and
scattering parameters. Berns et al. [26] estimate the full
reflectance spectrum of a painting using a reduced dimension
parameterization made from spectra of known KM pigments.
Zhao et al. [27] achieve better reconstructions by fitting
mixtures of known pigments to estimated multispectral
reflectances. Pelagotti et al. [28] and Cosentino [29] both use
multispectral images as feature maps to identify single layers
of known pigments. Most similar to our work, Zhao et al. [30]
use multispectral measurements of Van Gogh’s “Starry
Night” to estimate one parameter masstone KM mixing
weights for known pigments to reconstruct the painting.
Delaney et al. [31] use fiber optic reflectance spectroscopy
and X-ray fluorescence to help identify and map pigments
in illuminated manuscripts. Abed et al. [32] described an
approach to identify pigment absorption and scattering
parameters and extract pigment concentration maps from a
multispectral image via a simplified, one-parameter Kubelka-
Munk model. All of these works require exotic acquisition
hardware, whereas we focus on generating plausible results
using standard, easy-to-obtain RGB images. There are plenty
of high-quality RGB images of paintings freely available via
the Google Art Project.

3 THEORY

The intuition behind this work comes from how pigments
mix in real versus digital media. Digital RGB color mixing
is a linear operation: all mixtures of two RGB colors lie on
the straight line between them in RGB-space. Mixing two
physical pigments with the same two apparent RGB colors,
however, produces a curve in RGB-space (Fig. 2). The shape
of this curve is a function of the multispectral Kubelka-Munk
coefficients of the pigments being interpolated. Our intuition
is that those multispectral coefficients can be deduced by the
observed shape of a mixing or thinning curve in RGB.

3.1 Kubelka-Munk Equations

The Kubelka-Munk equations (KM) are a physically-inspired
model for computing the per-wavelength reflectance value

of a layer of homogeneous pigment atop a substrate:

r =
1− ξ(x− y · coth(yst))
x− ξ + y · coth(yst)

x = 1 +
a

s
, y =

√
x2 − 1

(1)

where t is the thickness of the pigment layer, a and s are the
pigment’s absorption and scattering per unit thickness, ξ is
the substrate reflectance, and r is the final reflectance of the
pigment layer. a, s, ξ, and r are all per-wavelength, while the
thickness t is constant for all wavelengths. For convenience,
we use k = [{aλ}, {sλ}] to represent both KM coefficients
with a single vector variable across all wavelengths λ. We
denote the vectorized Equation 1 as r = km(k, ξ, t).

Mixtures of pigments are modeled as the weighted
average of KM coefficients:

kmix =

∑
wiki∑
wi

(2)

where ki is the ith pigment parameter vector.
To render a KM pigment to RGB requires knowing the

pigment’s KM coefficients, the substrate reflectance, the layer
thickness, the illuminant spectrum, and the color matching
functions which map from a reflectance spectrum to a
tristimulus value, which can then be converted to linear RGB
and gamma corrected to sRGB. Figure 3 shows the pipeline
for a single pigment. We use the D65 standard illuminant
and CIE color matching functions [33].

Every pixel has a parameter vector kp. For a pixel p in the
image with mixed KM coefficients kp, rp = km(kp, ξ, t)
yields a reflectance spectrum defined at each of the L
wavelengths. We denote the spectrum rendering pipeline
in Figure 3 as a function φ : RL → R3, so φ(rp) is the sRGB
color for pixel p. Thus to render an image I we have:

I = φ(km(K, ξ, t)) (3)

where K is the matrix of all pixels’ pigment parameters.
In contrast to RGB color compositing, this model is highly

non-linear and results in much more of an “organic” feel
of traditional media paints as compared to digital paintings
(Fig. 2).

It is important to consider the required number of wave-
lengths to simulate. Too many wavelengths will be difficult
to optimize, whereas too few may not be able to accurately
reconstruct the image appearance. We experimented with
mixtures of cyan, magenta, and yellow pigments from 33
wavelengths to 3. We found that below 8 wavelengths, the
color reproduction loses fidelity (Fig. 4). We can also see
that the size of the RGB gamut that can be reconstructed
is artificially restricted at 3 wavelengths versus 8. This is
in agreement with prior work such as RealPigment [6]
and IMPaSTo [5]. (Aharoni-Mack et al. [15] is based on a
gamut of 3-wavelength KM pigment parameters, which is
potentially more restrictive than our gamut of 8-wavelength
KM pigment parameters.)

3.2 Problem Formation

A painter creates a palette from a set of e.g. tubes of paint,
which we call the primary pigments. Every color in the
painting is a mixture of these primary pigments. Therefore,

PIGMENTO: PIGMENT-BASED IMAGE ANALYSIS AND EDITING 4

33

8

3

Fig. 4: Visualizing rendering with different numbers of wave-
lengths. The original cyan, magenta, and yellow pigment
coefficients, sampled at 33 wavelengths between 380nm
and 700nm, are downsampled to 8 and 3 wavelengths and
rendered with varying thickness. The RGB gamuts achieved
by mixing them are plotted. The 8 wavelength gamut appears
similar to the 33 wavelength gamut, but the 3-wavelength
gamut is significantly distorted.

mixtures of the primary pigments’ KM coefficients are
sufficient to reproduce the RGB color of every pixel in the
painting. Our method estimates the coefficients of a small
set of primary pigments to minimize the RGB reconstruction
error.

For L wavelengths, each primary pigment km is a vector
of 2L coefficients. We represent the set of M primary pig-
ments as anMx2Lmatrix H = [k1,k2, . . .kM]T . Every pixel
in the painting can be represented as a convex combination of
these primary pigments, w ·H, where w is the 1xM vector of
mixing weights (01xM ≤ w ≤ 11xM). We can express all N
pixels in the image as the matrix product K = WH, where
the w form the rows of the NxM matrix W. Eq. 3 becomes:

I = φ(km(WH, ξ, t)) (4)

where I is the Nx3 matrix of our painting’s per-pixel RGB
colors.

To simplify the problem, we assume the canvas is pure
white (ξ = 1). We further assume that the entire canvas is
covered with a single layer of constant thickness t = 1 paint,
where each pixel’s paint is a weighted mixture of pigments.
Thus, our equation becomes:

I = φ(km(WH)) (5)

We use Eq. 5 to pose an optimization problem:

Edata = ‖I− φ(km(WH))‖2

Esum = ‖W1Mx1 − 1Nx1‖2

W∗,H∗ = argmin{Edata + wsumEsum}
(6)

where 1Mx1 and 1Nx1 are column vectors of ones, and subject
to the constraints 0NxM ≤ W ≤ 1NxM and H > 0Mx2L.
Esum forces our per-pixel weights to sum to one, since
each pixel’s coefficients are a convex combination of the
primary pigments. As an alternative to Esum, one could use

W = softmax(W′) in Edata. This would allow unconstrained
variation of W′ while maintaining that the weights (rows) of
W sum to one. However, in our experiments we found that
Esum has better convergence properties.

We make the assumption that thickness t = 1, because
we are primarily focused on acrylic and oil paints, which
are quite thick, especially as compared to watercolor. Our
assumption means that we cannot capture impasto effects
or thin watercolor effects accurately. Note, however, that the
choice of which constant thickness value to use is arbitrary.
Thickness t appears in the KM equations as a scale factor
for s, but neither a nor s appear elsewhere except as a ratio.
Therefore, changing the constant thickness t to another value
is equivalent to uniformly scaling all a and s.

Allowing the thickness to vary introduces an additional
degree-of-freedom per pixel. Figure 5 shows an experiment
in which we solve for two pigments’ multispectral a and
s parameters and per-pixel mixing weights; we optionally
allow thickness to vary per-pixel. When thickness varies, the
problem is under-constrained. To make the problem tractable,
we add a smoothness regularization term. However, this
leads to incorrect thickness estimation and less accurate
multispectral reflectance (and slower optimization perfor-
mance). While varying thickness may be particularly useful
for watercolor or translucent paint, we did not pursue it in
our thick-paint scenario beyond these initial experiments.

3.3 Solution Space
In Eq. 6, W and H are both unknown, so we have
NM + 2LM unknown variables and 3N + N known
equations, which makes our problem under-constrained for
M > 3. We can use regularization to make the problem
over-constrained. While this results in a solution, there are
infinitely many solutions to the problem as originally stated
for any particular image. This is for two reasons.

First, φ(·) projects from L-dimensional reflectance spectra
to 3-dimensional tristimulus values. For any given tristimulus
value there are infinitely many possible spectra (metamers)
that could produce it. This is analogous to seeing only the
2D projection or “shadow” of a 3D curve. No matter how
many high dimensional samples we obtain, φ projects them
all in parallel.

Second, if there exists G s.t. WH = WGG−1H, for
0NxM ≤ WG ≤ 1NxM , and G−1H > 0Mx2L, then W′ =
WG and H′ = G−1H is another solution that generates the
same RGB result. In a simple geometric sense, G could be a
rotation or scale of the KM coefficients associated with the
primary pigments. So long as the set of observed pigment
parameters all lie within the polytope whose vertices are
the rows of H, then e.g. rotations and scales that maintain
that property will also produce solutions. If the colors are
near the edges of the gamut, or the pigment parameters are
near the edges of the KM space (i.e. have small values in the
KM coefficients), then there will be very little “wiggle room”
for the pigments to move. Conversely, if the set of observed
pigment parameters are compact (i.e. no KM coefficients near
zero), then many different gamuts may be possible.

4 METHOD

Our naively posed optimization problem (Eq. 6) is too slow
to run on an entire, reasonably-sized image at once. To

PIGMENTO: PIGMENT-BASED IMAGE ANALYSIS AND EDITING 5

ground truth

synthetic
image

thickness
per-pixel

pigments
1 & 2

varying thickness
 w/o a/s smoothness

RGB RMSE: 0.58

varying thickness
with a/s smoothness

RGB RMSE: 0.68

constant thickness
with a/s smoothness

RGB RMSE 1.24

constant thickness
w/o a/s smoothness
RGB RMSE: 1.39

Reflectance Absorption Scattering
Absorption
Scattering

Wavelength

Fig. 5: The effects of constant versus varying thickness paint
and our a

s masstone smoothness term (Equation 8). The
“synthetic image” column shows the reconstruction of the
ground truth image using two pigments’ recovered absorp-
tion and scattering parameters shown at right. Allowing
paint with varying thickness results in an underconstrained
problem. With a smoothness regularization term, the solution
deviates from ground truth in our experiments. The masstone
smoothness term results in scattering parameters that more
closely match ground truth.

improve performance, we decompose our task into two
subproblems: estimating primary pigments and estimating
per-pixel mixing weights.

4.1 Estimating Primary Pigments
The first step in our pipeline is to estimate a set of primary
pigment coefficients H that can reconstruct the painting.
Even for small input images of 0.25 megapixels, doing
this estimation over every pixel in the image would be
computationally very expensive. We observe that it is not
necessary to consider every pixel, since many pixels contain
redundant information. Therefore, we optimize over a small
subset of representative pixels, carefully chosen to well-
represent the image’s color properties.

To find a small subset of representative pixels Isubset, we
find the 3D convex hull of the set of RGB colors in the image
using the QHull algorithm [34]. For the images we tested,
this usually results in a few hundred unique colors. These
pixels are particularly well suited to the task of estimating
the primary pigments because they span the full gamut of

the painting’s colors. They are guaranteed to include the
most extreme combinations of pigments. Conversely, pixels
in the interior of the convex hull are less distinct, resulting in
less vibrant recovered primary pigments.

The optimization problem as posed in Eq. 6 is very
similar to non-negative matrix factorization—which is non-
convex—with the added non-linearities of the KM equation
and gamma correction. Therefore, we use the Alternating
Nonlinear Least Squares (ANLS) method for our optimiza-
tion.

In the first step, we fix the set of primary pigment
coefficients H and solve for the mixing weights Wsubset:

W∗
subset = argmin{Edata + wsumEsum} (7)

with the constraint 0N1xM ≤Wsubset ≤ 1N1xM , where N1 is
the number of representative pixels, and M is the number of
pigments, and wsum = 10.0.

In the second step, we fix Wsubset and solve for H. When
estimating the primary pigments, we add an additional
regularization term to avoid creating physically implausible
pigment coefficients. Specifically, KM pigment coefficients a
and s should vary smoothly across wavelengths [6], and the
ratio a

s (which determines the pigment’s masstone) should
also vary smoothly across wavelengths (Figure 5). We encode
these smoothness observations as:

Esmooth =
N

M(L− 1)

M∑
i=1

L−1∑
λ=1

(
wa(ai,λ − ai,λ+1)

2

+ws(si,λ − si,λ+1)
2

+wratio

(
ai,λ
si,λ
− ai,λ+1

si,λ+1

)2) (8)

over all M primary pigments and L wavelengths, where
wa = ws = 1 and wratio = 0.001 control the relative influence
of the terms. Putting it all together, our optimization for the
second step is:

H∗ = argmin{Edata + wsmoothEsmooth} (9)

with the constraint H > 0Mx2L, where M is the number of
pigments, and L is the number of wavelengths, and wsmooth =
0.001.

Initialization As with any non-convex optimization
problem, initialization is a key factor in how quickly the
solution converges and whether a local minimum is found.
In our case, the solution is not unique, so there are many
potential minima to converge upon. Therefore, initialization
is very important for finding a good solution.

One option is to initialize randomly, which produces
somewhat unpredictable results, though we do find that
plausible solutions (where the colors of the primary pig-
ments roughly match a painter’s expectations) are often
well-represented. In the absence of other information, we
can present the user with the results of e.g. ten random
initializations to choose their preferred solution.

An alternative is to take advantage of a prior, such as a
natural distribution of real pigments in KM space. We use a
set of 26 measured acrylic paints from Okumura [16]. When
the prior is similar to the pigments used in the painting,
reconstruction often finds the approximately correct KM
coefficients. When the prior is of a different media than

PIGMENTO: PIGMENT-BASED IMAGE ANALYSIS AND EDITING 6

so
le
il

au
tu
m
n

Im
pa
st
o_
flo
w
er
2

la
nd
sc
ap
e4

po
rtr
ai
t2Fig. 6: Our results for multiple images, one per row. From left to right the columns are the original image, the reconstruction,

the error (10x), the extracted palette, and the mixing weight maps. Because our pigments are multispectral, we show them
as RGB colors rendered on a white canvas with unit thickness. From second to end: c© MontMarteArt, Jan Ironside, Graham
Gercken.

the painting (e.g. using an acrylic prior with a watercolor
painting), then while the result will have low reconstruction
error and look plausible, the mixing properties of the
pigments may not be correct (e.g. a watercolor painting
may have more opaque pigments in the reconstruction than
in reality). When multiple such priors are available, a user
could select the correct prior to use for a given painting. In
our experiments, we rely on the dictionary of Okumura’s 26
acrylic pigments. To boost the size of the dictionary, we also
include every pair of pigments mixed 50%, for a total of 351
entries.

To initialize H with M pigments using our prior, we start
from the convex hull of the RGB colors in the image. We
simplify the convex hull to M vertices as in Tan et al. [10].
We then match these M RGB colors to the closest matching
(Euclidean distance) RGB colors in the dictionary and use the
corresponding KM coefficients. The RGB color of a dictionary
pigment is obtained by rendering with the same pipeline
as Eq. 3 (with thickness t = 1 and substrate ξ = 1). If two
convex hull colors match to the same dictionary color, the
closer match is used and the other convex hull vertex matches
to its second closest dictionary color.

4.2 Estimating Mixing Weights
The second step of our pipeline uses the estimated set of
primary pigments to compute per-pixel mixing weights for
the entire image. We use observations about the nature of
painting construction to add additional regularization terms,
improving convergence and making the results more useful
for editing applications.

First, we add a term for per-pixel weights sparsity [10],
which encourages each pixel’s M pigment weights to be
close to 0 or 1:

Esparse = −
1

M
‖1NxM −W‖2 (10)

where 1NxM is matrix of ones. This term has the effect of
maximizing color separation throughout the painting, so that

each pigment influences as small a portion of the image as
possible. This is desirable because it results in more localized
pigment editing operations.

Second, we add a term for spatial smoothness of the
weights:

Espatial =
1

M
‖SW‖2 (11)

where S is a Laplacian or a bilateral smoothing matrix. We
use a bilateral operator [35] in order to preserve edges that
appear between brush strokes of different colors of paint. In
our experiments, the Laplacian operator blurred edges and
caused pigments to incorrectly bleed into image regions.

With these additional terms, our optimization to recon-
struct mixing weights becomes:

W∗
all = argmin{Edata + wsumEsum + wsparseEsparse

+ wspatialEspatial}
(12)

where wsum = 10, wsparse = 0.1, and wspatial = 1 subject to
0NxM ≤Wall ≤ 1NxM , where N is the number of pixels in
the entire image and M is the number of pigments.

This optimization is still very large and difficult to solve
directly. Instead, we solve it in a coarse-to-fine manner. We
downsample the image by factors of two until the short
edge is less than 80 pixels. We solve the optimization on the
smallest image, initializing each pixel’s mixing weights to
1/M . We upsample each solution (mixing weights) as the
initialization for the next larger optimization. We repeat this
procedure to obtain a solution for the original image.

Pseudocode for our method can be found in Algorithm 1.
Computational complexity is difficult to analyze because our
approach is based on iterative nonlinear optimization Run-
time performance is dominated by the optimization for all
pixels’ weights (line 15), as discussed in the following section.
To evaluate the convergence of our pigment parameter esti-
mation’s two alternating optimization steps, we measure the
total energy (Edata + wsmoothEsmooth + wsumEsum) per iteration.
Fig. 7 plots this for six of the examples used in Table 1. In all

PIGMENTO: PIGMENT-BASED IMAGE ANALYSIS AND EDITING 7

Algorithm 1: Extract mixing weights and multi-spectral
pigment parameters from single RGB image

Input: RGB Image INx3 and user-provided number of
primary pigments M .

Output: Primary pigment KM parameters HMx2L and
mixing weights WNxM .

1 Isubset ← vertices of ConvexHull(I)
2 paletteRGB ← Simplify(ConvexHull(I), M)
3 H(0) ← ClosestColors(paletteRGB, Okumura mixtures)
4 i← 0
5 while true do
6 W

(i)
subset ← Solve Equation 7(Isubset, H(i))

7 H(i+1) ← Solve Equation 9(Isubset, W
(i)
subset)

8 // Terminate upon small relative change in H
9 // Absolute value and min() are element-wise.

10 numerator← |H(i+1) −H(i)|
11 denominator← min(H(i+1),H(i))
12 // Maximum is over all elements.
13 if maximum(numerator/denominator) < 0.001

or i = 1000 then
14 H∗ ← H(i+1)

15 break
16 end
17 i← i+ 1
18 end
19 W∗

all ← Solve Equation 12(I, H∗)
20 return H∗, W∗

all

Primary pigment estimation convergence

T o
ta

le
ne

rg
y

0 10 20 30 40
0.0
0.5
1.0
1.5
2.0
2.5
3.0 autumn_s

0 2 4 6 8 10 12 14
0

1

2

3

4

5
four_colors_2

0 200 400 600 800 1000
0.0

0.5

1.0

1.5

2.0
Impasto_flower2_s

0 200 400 600 800 1000
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5 landscape4_s

0 10 20 30 40 50
0

1

2

3

4

5 portrait2_s

0 10 20 30 40 50 60
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

tree

Iteration

Fig. 7: The total energy for our primary pigment estimation
decreases monotonically per iteration (Edata +wsmoothEsmooth +
wsumEsum). Each iteration performs both alternating steps,
minimizing Equations 7 and Equation 9.

examples, the energy decreases rapidly after a few iterations.
Some examples reach the maximum number of iterations
rather than our strict convergence criteria (Algorithm 1).

G
ro

un
d

tru
th

R
ec

ov
er

ed

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

405 445 485 525 565 605 645 685
0.0

0.2

0.4

0.6

0.8

1.0

405 445 485 525 565 605 645 685
0.0

0.2

0.4

0.6

0.8

1.0

405 445 485 525 565 605 645 685

Reflectance Absorption Scattering

Fig. 8: Recovering ground truth. Our reconstruction has low
RGB error and the palette and mixing weight maps are
similar upon inspection. The graphs of spectral curves show
reflectances are recovered well, but absorption and scattering
less so. Numeric results are in Table 2. Ground truth curves
are dashed, recovered are solid, and colors correspond to
palette colors. Note: ground truth black coefficients are
plotted with a scale factor of 0.2 to achieve a similar range as
the other pigments. c© Nel Jansen.

5 RESULTS

To demonstrate our results, we conducted a series of exper-
iments on synthetic and real images, comparing amongst
different conditions and with previous work. All tests were
run on a single core of either a 2.53 GHz Intel Xeon E5630
or a 2.50 GHz Intel Core i7-4870HQ, implemented in Python
using the L-BFGS-B [36] solver. Runtime information is
presented in Table 1, which shows that we are generally
faster than Tan et al. [10]. Once the primary pigments and
mixing weights are estimated, all of our editing applications
occur in realtime.

TABLE 1: Performance data for Fig. 6 and 10. Our pipeline
extracts M primary pigments in a few seconds and mixing
weights maps in less than 10 minutes for a normal size image,
with low RGB image reconstruction error.

Primary Weights RGB
Image Size M CPU (sec) (sec) RMSE

soleil 600x467 6 i7 35 155 0.007
autumn 600x458 5 xeon 16 255 0.024
four colors 2 600x598 4 i7 9 211 0.020
Impasto flower2 595x600 6 xeon 44 615 0.02
landscape4 600x479 5 xeon 26 256 0.018
portrait2 600x441 6 xeon 29 243 0.017
tree 600x492 4 i7 14 151 0.016

Synthetic Data We used synthetic images to evaluate our
pipeline’s recovery performance against ground truth. We
used our pipeline to obtain weight maps from a painting. We
then created five synthetic paintings by randomly choosing
sets of pigments from a dataset of measured multi-spectral
KM coefficients of real acrylic paint [16]; mixing them
according to our weight maps; and rendering them to sRGB
using Eq. 3. These five synthetic paintings appear to depict
the same flower painted with different colors. To make our
initialization fair, we used a hold-one-out methodology for
the pigment dictionary: we removed the five pigments used
to construct the synthetic image from the set of candidate
pigments for initialization, leaving a dictionary of 21 (plus

PIGMENTO: PIGMENT-BASED IMAGE ANALYSIS AND EDITING 8

0

5

10

15

20

25

30

35

40

45

4 5 6 7 8

R
G

B
 R

M
SE

Number of pigments

Fig. 9: We plot the distribution of RGB RMSE of 12 example
images’ reconstructions on different palette size. Generally,
RMSE will decrease when palette size increase, and RMSE
distribution deviation will decrease when palette size in-
crease.

mixed pigments, so 231 in total). Fig. 8 shows one example of
our five synthetic images and its recovery. All reconstruction
errors are presented in Table 2.

The results of this experiment are that the pigment
coefficients a and s have relatively high error, where for
our measured pigments, a ∈ [0, 10] and s ∈ [0, 1]. Our
reflectance spectra r have lower recover error, r ∈ [0, 1],
because there are many values of a and s that can create
the same appearance r (metamers). Since the pigments are
different from ground truth, the recovered weight maps
W ∈ [0, 1], are different as well. However, the RGB image’s
reconstruction error is small, generally below the noticeable
threshold. We also tested the weight map recovery step
in isolation by using ground truth pigments to estimate
W*, which has a smaller but still significant recovery error.
The final RGB* image reconstruction error stays low. This
experiment confirms that there are many solutions to our
reconstruction problem, but that we are able to reproduce
plausible values.

TABLE 2: Reconstruction errors for synthetic data exper-
iments (Fig. 8) with constant weight maps and different
pigments. Each reported number is RMSE, for pigment
absorption a and scattering s coefficients and reflectance
r. From those pigments, weight map W and RGB image
are recovered. To test weight map recovery in isolation,
W* and RGB* use the ground truth pigments. Because
there are many solutions (Section 3.3), we cannot recover
ground truth parameters (a,s,W). However, the RGB image’s
reconstruction error is always small and unnoticeable.

Exp a s r W W* RGB RGB*

1 6.1 1.2 0.3 0.114 0.060 0.019 0.023
2 1.4 0.9 0.3 0.078 0.046 0.027 0.017
3 4.5 0.5 0.7 0.247 0.084 0.026 0.023
4 7.1 1.2 0.6 0.166 0.055 0.033 0.024
5 1.0 0.7 0.3 0.065 0.041 0.023 0.020

Mean 4.0 0.9 0.4 0.134 0.057 0.026 0.021
Std 2.7 0.3 0.2 0.074 0.017 0.005 0.003

Influence of Palette Size Since the number of primary
pigments is not automatically determined by our algorithm,
we evaluated a set of images over a wide range of palette
sizes (Fig. 9). Unsurprisingly, as the number of pigments

Tan et al. 2016
4 pigments
RMSE: 23.4 four_colors_2

Ours
4 pigments
RMSE: 5.2

Tan et al. 2016
6 pigments
RMSE: 4.7

Aksoy et al. 2017
7 layers

RMSE: ~0

Chang et al. 2015

Tan et al. 2016
4 pigments
RMSE: 10.1 tree

Ours
4 pigments
RMSE: 4.0

Tan et al. 2016
6 pigments
RMSE: 4.5

Aksoy et al. 2017
6 layers

RMSE: ~0

Chang et al. 2015

4

5

6

7

4

5

6

7

Fig. 10: Comparison with the layer decompositions of Tan et
al. [10] and Aksoy et al. [12], and with the palettes extracted
by Chang et al. [14]. The upper four colors 2 example
was painted with exactly four physical pigments. When
constrained to four colors, Tan et al.’s approach has higher
reconstruction error. To match our reconstruction error, Tan
et al.’s approach needs to use more colors. Aksoy et al.’s
approach extracts layers guaranteed to have zero reconstruc-
tion error, but the extracted layers are not composed of a
single color. Chang et al.’s approach extracts a palette whose
size is manually chosen by the user. For the four colors 2
image (top), Chang et al.’s palettes never contain the known
ultramarine blue pigment, even for very large palettes. Top
example: c© Cathleen Rehfeld.

increases, aggregate reconstruction error decreases. Inter-
estingly, each image seems to have a number of pigments
beyond which the RMSE stops decreasing. Intuitively, this
would be the natural number of pigments in the painting.
For paintings with very large numbers of pigments, it is
unlikely that this property would hold, as eventually a large
set of primary pigments would be over-complete and no
additional information could be gained. However, painters
often use relatively small palettes in practice.

Physical Paintings We show our pipeline running on

PIGMENTO: PIGMENT-BASED IMAGE ANALYSIS AND EDITING 9

Fig. 11: The approach of Aksoy et al. [12] applied to the same
examples as in Figure 6. The columns show the input image,
their extracted palettes, and their layers. Reconstructions
are not shown, because Aksoy et al.’s approach has no
reconstruction error. This is because their palettes contain
color distributions, not single colors. As a result, their
layers are sometimes quite colorful and difficult to edit.
The approach automatically chooses a palette size balancing
choosing larger (sometimes redundant) palettes with less
colorful layers. From second to end: c©MontMarteArt, Jan
Ironside, Graham Gercken.

scans of physical paintings in Figures 6 and 10: extracted
primary pigments, weight maps and reconstructed RGB
images. Reconstruction errors are reported in Table 1. We
reconstructed with 4 to 6 pigments for every example, but
only show the result with the smallest palette that produced
low reconstruction error. Painting four colors 2 is known
to have been created with only four paints: titanium white,
cadmium yellow lemon, cadmium red, and ultramarine blue.
Our extracted palette’s RGB colors are very similar, though
the yellow is a bit greenish and the blue is dark.

Comparison to Tan et al. [10]. Our algorithm uses
multispectral pigments with the nonlinear KM model, in
contrast to previous work like Tan et al. [10], which solves
a similar problem using a linear compositing RGB model.
Intuitively, we would expect that our model would be able to
reconstruct paintings at lower error with fewer parameters.
The experiment we show in Fig. 10 confirms this. For two
paintings, our technique is able to reconstruct the images
with low error using only four pigments. Tan et al. [10]’s
algorithm results in much higher error for the same number
of colors. In order to achieve a similar RGB reconstruction
error, Tan et al. [10] must increase the palette to six colors. In
general, it is easier to edit a painting with a smaller palette.

Comparison to Aksoy et al. [12]. Figures 10 and 11
show the same examples decomposed using the approach
of Aksoy et al. [12]. Their approach extracts additive linear
RGB mixing layers. The layers contain color distributions,
not single colors, though their approach guarantees zero
reconstruction error. The number of layers is automatically
selected, balancing the colorfulness of layers against smaller
palettes. The colorful layers are difficult to edit, since color
distributions must be modified.

Comparison to Chang et al. [14]. Figure 10 shows

8.1

original8 wavelength recovery 3 wavelength recovery

6.51.9 soleil

8.54.4 portrait2

11.06.0 autumn

6.3landscape44.7

7.3Impasto_flower45.1

5.2tree4.0

four_colors_25.2

Fig. 12: Comparison of 3 and 8 wavelength recovery, with
RGB RMSE. We find 3 wavelength reconstruction error is
higher for all examples. Soleil and autumn example show
color distortion. Second example: c©MontMarteArt.

palettes for the same input images extracted by the approach
of Chang et al. [14]. In their approach, the palette size is
manually chosen by the user. For the four colors 2 image
with known four ground truth pigments, even very large
palettes never contains a color similar to ultramarine blue.
Instead, “redundant” colors are added.

Influence of Wavelengths Our pipeline recovers 8
wavelength pigment absorption and scattering coefficients,
because of the experiment in Figure 4 that shows a limited
RGB gamut for 3 wavelength rendering. For completeness,
we compare with 3 wavelength recovery in Figure 12. As
3 wavelength recovery is not multispectral anymore, we
slightly amend our model equation, Eq. 3: we change the
illuminant from D65 to pure white (13x1), and we set the
color matching function to be the identity matrix (I3x3). This
has the effect of directly mapping the a and s coefficients to
the RGB color channels, as done by Curtis et al. [4].

We find that 3 wavelength recovery has larger RGB
reconstruction RMSE for the same size palettes in all of
our experiments, though many of the achieved errors are still
low enough to be generally unnoticeable. For some images,
such as the two pictured in Fig. 12, there is obvious color
distortion. We believe this is due to the restricted gamut of
the 3 wavelength pigment model, which has a significant
(visible) impact only on paintings that include colors in
those extreme portions of the gamut, notably certain greens
and reds. For paintings with colors entirely within the 3
wavelength gamut, the differences will be negligible.

We also compare 3 wavelength recovery with linear RGB
of Tan et al. [10] on example images tree and four colors 2 in
Fig. 10 and 12. The 3 wavelength KM recovery still produces
better RGB reconstruction error for the same number of

PIGMENTO: PIGMENT-BASED IMAGE ANALYSIS AND EDITING 10

Rectangle Input Grabcut on KM layer Grabcut on RGB

Fig. 13: GrabCut on selected KM pigment mixing weights
(top: red, bottom: black) outperforms GrabCut on the RGB
image. First example: c© Patty Baker.

colors than the linear model.

6 APPLICATIONS

Once we have analyzed a painting to extract its primary
pigments (inset for most figures) and mixing weight maps,
we can re-pose a number of image editing operations in
pigment space to enable interesting paint-aware applications.

6.1 Masking
Selection masking in images of paintings can be improved
by optimizing on pigment weights instead of RGB colors.
Semantic image boundaries are likely to correspond with
changes in paint, whereas RGB edges may be less obvious,
when different paint mixtures are used to paint distinct
objects. Also, paint thickness can create lighting variations
across the surface of the painting that can confuse RGB
boundary analysis. We demonstrate a standard GrabCut [37]
implementation on two paintings on pigment maps vs. RGB
values in Figure 13, which clearly shows improved local-
ization of painted objects in the black rectangular regions.
GrabCut was performed on the red pigment for the top
painting, and on the black pigment for the bottom painting.
No background and foreground scribbles are provided to the
GrabCut algorithm.

6.2 Adjustments
The pigment mixing maps provide a novel parameterization
for image edits that may be difficult in RGB, by adjusting
the relative values of the mixing weights, or adjusting the
coefficients of the extracted pigments. First, we can vary the
weight of any of the extracted pigments by scaling its map up
or down and optionally re-normalizing the per-pixel weight
sum to one. For a painting that has e.g. yellow pigment,
this change corresponds to varying the amount of yellow
in the image, in a way that would be difficult to reproduce
using the features of a digital image manipulation program
(Fig. 14).

Similarly, most extracted palettes include some white and
black pigments for creating tints and shades. Adjusting the
relative weights of these pigments is akin to adjusting the
brightness and contrast of an image, but again with different
results. For example, in Fig. 15a, the result of increasing the

Original

Original

Original

Reduce yellow Add more yellow

Reduce red Add more red

Reduce blue Add more blue

Fig. 14: Adjusting the absolute mixing weight of a pigment
without re-normalizing the weight sum creates variations
that would be difficult to reproduce in RGB. First and second:
c© Graham Gercken, John Larriva.

black weight is more like emphasizing shadows and detail,
instead of just darkening, while the result of increasing the
white weight is desaturation of the colors.

The KM coefficients of the pigments can also be relatively
adjusted for interesting effects. Fig. 15b shows scaling the
per-wavelength scattering coefficients of the green pigment,
while keeping absorptions constant. Increasing scattering
means that more light will be reflected back, so in some
sense this is similar to brightening the green and making it
more opaque, while decreasing scattering creates a darker
green that absorbs more than it scatters, so perhaps more
like a stained glass. Changing the scattering coefficients
produces different hues of green compared to manipulating
the pigment mixing weight (rightmost image in Fig. 15b).

6.3 Recoloring
Previous work focused on recoloring images by changing
the extracted palette colors. Tan et al. [10] reconstructs
each image pixel as a set of RGB layers, so changing a
palette color has a straightforward impact on the resulting
image. Our recoloring result is similar to Tan et al. [10],
with the difference being that we replace KM pigments
in the extracted palette with other KM pigments (from
Okumura [16]) and re-render the image, creating different
mixed colors in the style of real traditional media paints.
Fig. 16a shows three examples. To enable a more direct
comparison, we use our extracted palette RGB colors as
the layer colors in Tan et al. [10]. In the cat painting, the

PIGMENTO: PIGMENT-BASED IMAGE ANALYSIS AND EDITING 11

Original

Increase the mixing weight of white pigment

Increase the mixing weight of black pigment Decrease brightness

Increase brightnessIncrease all weights

(a) Adjusting the absolute mixing weights of black and white pigments.
The effects (middle two images) are different from adjusting the
brightness level using photo manipulation software (rightmost image).
Increasing the mixing weights of all layers (bottom left image) results in
pigments reaching their respective masstones. c© Pamela Gatens

[

Original Increase scattering Decrease scattering Decrease mixing weight

(b) Adjusting the scattering cofficients of the green pigment. Changing
the scattering coefficients produces different effect from manipulating
the mixing weights (rightmost image). c© Mark Adam Webster

Fig. 15: Tonal adjustments in pigment space.

KM mixing weight map for the blue pigment is sparse and
therefore the recoloring effect is localized on the body of the
cat. The weight map from Tan et al. [10] has non-zero values
in the background resulting in recoloring artifacts. For the
rooster painting, using our KM model, more vibrant green is
obtained from mixing yellow and blue in the circled region.
For Starry Night, when swapping the extracted yellow
pigment with a different yellow, the KM recoloring result
reveals the green hue in the new yellow pigment, whereas
the RGB recoloring result is similar to the original painting
since the two yellow pigments have similar masstones in
RGB space. Fig. 16b shows a different recoloring comparison
between Tan et al. [10], Chang et al. [14] and ours. Both Tan
et al. [10] and Chang et al. [14] have color artifacts when
using their own pipelines to recolor the painting to be similar
to our result.

6.4 Cut, Copy, Paste
From a selection mask, we can use the pigment weight maps
to do painterly cut, copy, and paste operations on images
as well. For copy-paste, the user can specify a mask (using
any mechanism) and the subset of pigments to copy. The
selected region can then be pasted elsewhere as a new layer
of paint on top of the image and re-composited. The paste
operation can adjust paint properties simultaneously such
as the thickness of the pasted layer, to achieve different
compositing results, or can be added into the mixture model
as additional paint mixed into the painting layer, with
relative scaling and renormalization. These options result in
different painterly variations on standard image copy-pasting
(Fig. 17 and Fig. 1).

Original blue pigment -> green (ours) blue RGB -> green (Tan2016)

Original

Original

red pigment -> blue (ours) red RGB -> blue (Tan2016)

yellow pigment -> yellow (ours) yellow RGB-> yellow (Tan2016)

(a) We use our palette’s RGB colors for layers in Tan et al. [10] for direct
comparison. Top: blue is replaced by green. Middle: red is replaced by
blue. Bottom: yellow is replaced with a different yellow. First and second:
c© Pamela Gatens, Patti Mollica.

original

Ours Tan et al. 2016 Chang et al. 2015

(b) Each method extracts its own palette from the input image, so we
attempt to mimic our result as closely as possible. Tan et al. [10] suffers
from lack of sparsity, while Chang et al. [14] has surprising local colors
(red arrows). c© Jan Ironside.

Fig. 16: Recoloring comparisons.

The cut operation deletes the selected pixels’ pigments
from the painting, for which inpainting fills the resulting
hole (Fig. 1). We use a fast marching method [38], though
alternatives such as PatchMatch [39] would also work, so
long as they can operate on arbitrary numbers of image
channels.

6.5 Palette Summarization
The first stage of our algorithm can also be seen as yet another
method for extracting a small palette from an arbitrary image,
not necessarily of paintings. Tan et al. [10] and Chang et
al. [14] both present palette-extraction methods, as does
Adobe’s Color CC app [40]. We compare these results in
Fig. 18a, where it is clear to see that Chang et al. [14] and
Kuler attempt to find “salient” or meaningful colors in some
sense, whereas Tan et al. [10] and our work focus on colors
that reconstruct the images. We achieve similar results to Tan
et al. [10], but as we showed earlier our reconstructions are
much lower error for the same number of colors, as we have

PIGMENTO: PIGMENT-BASED IMAGE ANALYSIS AND EDITING 12

Fig. 17: Results of copy paste in pigment space. Each classical
painting has been modified by selecting some set of pigments
from a region of pixels, and adding them as a new layer
on top elsewhere in the image. While the pasted regions
are not identical to the copied regions (as they would be
with standard RGB copy paste), they appear as if they were
painted as part of the image.

ours

Tan2016

Chang2015

Color CC

(a) Palette summarization ap-
plied to photos, as compared to
Tan et al. [10], Color, and Chang
et al. [14].

1883

1884

1885

1886

1887

1888

1889

1890

(b) Summarizations of Van
Gogh’s paintings arranged by
year to show evolution of style.

Fig. 18: Examples of palette summarization.

more success with paint-like color mixtures such as green
and cyan.

We can also use our palette extraction method to analyze
collections of images, by amending our method to jointly
reconstruct the pixels of multiple images. We use this
approach to extract aggregate palettes from paintings of
Van Gogh organized by year (Fig. 18b). Two results are clear
from this analysis. First, the range of colors Van Gogh painted
with expanded over the 1880’s, as we expanded from eight
pigments to ten pigments to achieve good reconstruction
errors. Second, the vibrancy increased dramatically as well.

6.6 Edge Detection and Enhancement
Our weight maps can improve edge-based image analysis
(Fig. 19). We apply an existing edge detection method [41]

on RGBon weights map original Enhancement

Fig. 19: Paint-aware edge detection and enhancement.

to each weight map separately and merge the per-pigment
response as the per-pixel max. Paint edge images can be
used to adapt standard image processing routines to be paint-
aware. For example, we do edge enhancement by thickening
pigments near boundaries according to the edge response,
which can visually emphasize painted objects in a different
way than RGB edge enhancement.

7 CONCLUSION

We demonstrate a method that can recover plausible physical
pigments from only an RGB image of a painting, and then
recover the mixing proportion of those pigments at each
pixel. We are able to accurately reconstruct the RGB values of
the image, and even closely match multispectral reflectance
per-pixel as well, though the underlying pigment coefficients
may differ. We use this decomposition to enable a number
of image editing operations that occur in “pigment space,”
which creates results in a style more consistent with natural
media imagery rather than digital RGB edits.

Limitations First, our approach requires users to choose
a target number of primary pigments. While this is the
only user interaction in our entire pipeline, it is still a
decision that the user must make. As shown in Fig. 9, a
large number of primary pigments will have lower RGB
image reconstruction error at the cost of more tedious edits
and additional processing time. Second, if a ground truth
primary pigment can be mixed from other primary pigments,
our technique will not find it. However, this is an ambiguous
situation, since it is not needed for perfect reconstruction.
Still, it may be important for applications like pigment
identification. Third, we use the Okumura [16] dataset as
a prior to help find initial a, s values for our optimization,
though our solutions are not limited to them. We do not
have other pigment datasets to verify whether this prior
causes us to overfit our recovered pigment parameters. For
example, this prior information may be more helpful for
finding acrylic or oil pigments than watercolor. Fourth, we
assume constant pigment thickness. This is a simplifying
assumption that speeds our optimization since the solution
space is already under-constrained. However, if we allowed
for varying thickness, darker and lighter tones of a pigment
could be obtained without a black or white pigment. We
could reduce our palette size by computing the 2D convex
hull of the chromaticity of the pixels, ignoring brightness
(Section 4.1). This is similar to the approach used by Aharoni-
Mack et al. [15]. We would also be better able to handle
media like watercolor with varying translucency. Finally, our
approach does not recover ground truth, just plausible results
enabling paint-like editing.

Future work In the future, we would like to extend our
result to estimate pigment layers instead of just mixtures.

PIGMENTO: PIGMENT-BASED IMAGE ANALYSIS AND EDITING 13

We plan to use our decomposition to help extract brush
stroke-level structure from images of paintings, to enable
manipulation of the brush strokes in painting images. We
predict that interpreting complex image structures with
more appropriate models will have applications in many
applications of computer graphics.

8 ACKNOWLEDGMENT

We thank the anonymous reviewers for their inspirational
comments and suggestions. We are also grateful to Yağız
Aksoy for providing comparison results, and to the artists
whose paintings we analyzed. This work was supported
in part by the United States National Science Foundation
(IIS-1451198, IIS-1453018), a Google research award, and gifts
from Adobe Systems, Inc.

REFERENCES

[1] P. Kubelka and F. Munk, “An article on optics of paint layers,”
Zeitschrift für Technische Physik, vol. 12, no. 593–601, 1931.

[2] P. Kubelka, “New contributions to the optics of intensely light-
scattering materials. Part I,” Journal of the Optical Society of America,
vol. 38, no. 5, pp. 448–448, 1948.

[3] D. R. Duncan, “The colour of pigment mixtures,” Proceedings of the
Physical Society, vol. 52, no. 3, p. 390, 1940.

[4] C. J. Curtis, S. E. Anderson, J. E. Seims, K. W. Fleischer, and D. H.
Salesin, “Computer-generated watercolor,” in SIGGRAPH, 1997, pp.
421–430.

[5] W. V. Baxter, J. Wendt, and M. C. Lin, “IMPaSTo: A realistic,
interactive model for paint,” in NPAR, 2004, pp. 45–56.

[6] J. Lu, S. DiVerdi, W. A. Chen, C. Barnes, and A. Finkelstein,
“RealPigment: Paint compositing by example,” in NPAR, 2014, pp.
21–30.

[7] J. Tan, M. Dvorožňák, D. Sýkora, and Y. Gingold, “Decomposing
time-lapse paintings into layers,” ACM Trans. Graph., vol. 34, no. 4,
pp. 61:1–61:10, Jul. 2015.

[8] G. L. Bernstein and W. Li, “Lillicon: Using transient widgets
to create scale variations of icons,” ACM Trans. Graph.,
vol. 34, no. 4, pp. 144:1–144:11, Jul. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2766980

[9] K. Kwok and G. Webster, “Project Naptha: highlight, copy, and
translate text from any image,” https://projectnaptha.com/, 2016,
accessed: 2017-01-15.

[10] J. Tan, J.-M. Lien, and Y. Gingold, “Decomposing images
into layers via RGB-space geometry,” ACM Trans. Graph.,
vol. 36, no. 1, pp. 7:1–7:14, Nov. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2988229

[11] S. Lin, M. Fisher, A. Dai, and P. Hanrahan, “Layerbuilder: Layer
decomposition for interactive image and video color editing,” arXiv
preprint arXiv:1701.03754, 2017.

[12] Y. Aksoy, T. O. Aydin, A. Smolić, and M. Pollefeys, “Unmixing-
based soft color segmentation for image manipulation,” ACM
Transactions on Graphics (TOG), vol. 36, no. 2, p. 19, 2017.

[13] Q. Zhang, C. Xiao, H. Sun, and F. Tang, “Palette-based image recol-
oring using color decomposition optimization,” IEEE Transactions
on Image Processing, vol. 26, no. 4, pp. 1952–1964, 2017.

[14] H. Chang, O. Fried, Y. Liu, S. DiVerdi, and A. Finkelstein, “Palette-
based photo recoloring,” ACM Trans. Graph., vol. 34, no. 4, Jul.
2015.

[15] E. Aharoni-Mack, Y. Shambik, and D. Lischinski, “Pigment-based
recoloring of watercolor paintings,” in NPAR, July 2017.

[16] Y. Okumura, “Developing a spectral and colorimetric database
of artist paint materials,” Master’s thesis, Rochester Institute of
Technology, 2005.

[17] I. Kauvar, S. J. Yang, L. Shi, I. McDowall, and G. Wetzstein,
“Adaptive color display via perceptually-driven factored spectral
projection,” ACM Trans. Graph., vol. 34, no. 6, pp. 165:1–165:10, Oct.
2015. [Online]. Available: http://doi.acm.org/10.1145/2816795.
2818070

[18] S. Xu, H. Tan, X. Jiao, F. C. Lau, and Y. Pan, “A generic pigment
model for digital painting,” Computer Graphics Forum, 2007.

[19] B. Boldrini, W. Kessler, K. Rebner, and R. Kessler, “Hyperspectral
imaging: a review of best practice, performance and pitfalls for
inline and online applications,” Journal of Near Infrared Spectroscopy,
vol. 20, no. 5, pp. 438–508, 2012.

[20] R. Berns, L. Taplin, and M. Nezamabadi, “Spectral imaging using a
commercial colour-filter array digital camera,” in ICOM-CC, 2005,
pp. 743–750.

[21] M. Parmar, S. Lansel, and J. Farrell, “An LED-based lighting system
for acquiring multispectral scenes,” in Digital Photography VIII,
2012. [Online]. Available: http://dx.doi.org/10.1117/12.912513

[22] J.-I. Park, M.-H. Lee, M. D. Grossberg, and S. K. Nayar, “Multispec-
tral imaging using multiplexed illumination,” in ICCV, 2007, pp.
1–8.

[23] A. Ibrahim, T. Horiuchi, S. Tominaga, and A. Ella Hassanien,
“Spectral reflectance images and applications,” in Image Feature
Detectors and Descriptors: Foundations and Applications, A. I. Awad
and M. Hassaballah, Eds., 2016, pp. 227–254.

[24] R. S. Berns, L. A. Taplin, F. H. Imai, E. A. Day, and
D. C. Day, “A comparison of small-aperture and image-
based spectrophotometry of paintings,” Studies in Conservation,
vol. 50, no. 4, pp. 253–266, 2005. [Online]. Available:
http://dx.doi.org/10.1179/sic.2005.50.4.253

[25] H. Liang, K. Keita, B. Peric, and T. Vajzovic, “Pigment identification
with optical coherence tomography and multispectral imaging,”
2008.

[26] R. S. Berns and F. H. Imai, “The use of multi-channel visible spec-
trum imaging for pigment identification,” in ICOM-CC, September
2002, pp. 217–222.

[27] Y. Zhao, R. S. Berns, Y. Okumura, and L. A. Taplin, “Improvement
of spectral imaging by pigment mapping,” in Color and Imaging
Conference, 2005, pp. 40–45.

[28] A. Pelagotti, A. D. Mastio, A. D. Rosa, and A. Piva, “Multispectral
imaging of paintings,” IEEE Signal Processing Magazine, vol. 25,
no. 4, pp. 27–36, July 2008.

[29] A. Cosentino, “Identification of pigments by multispectral imaging;
a flowchart method,” Heritage Science, vol. 2, no. 1, p. 8, 2014.
[Online]. Available: http://dx.doi.org/10.1186/2050-7445-2-8

[30] Y. Zhao, R. S. Berns, L. A. Taplin, and J. Coddington, “An
investigation of multispectral imaging for the mapping of pigments
in paintings,” in Electronic Imaging, 2008.

[31] J. K. Delaney, P. Ricciardi, L. D. Glinsman, M. Facini, M. Thoury,
M. Palmer, and E. R. d. l. Rie, “Use of imaging spectroscopy,
fiber optic reflectance spectroscopy, and x-ray fluorescence to
map and identify pigments in illuminated manuscripts,” Studies in
Conservation, vol. 59, no. 2, pp. 91–101, 2014.

[32] F. M. Abed, Pigment identification of paintings based on Kubelka-Munk
theory and spectral images. Rochester Institute of Technology, 2014.

[33] N. Ohta and A. R. Robertson, CIE Standard Colorimetric System.
John Wiley & Sons, Ltd, 2006, pp. 63–114.

[34] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull
algorithm for convex hulls,” ACM Trans. Math. Softw., vol. 22, no. 4,
pp. 469–483, Dec. 1996.

[35] J. T. Barron and B. Poole, “The fast bilateral solver,” ECCV, pp.
617–632, 2016.

[36] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm 778: L-
BFGS-B: Fortran subroutines for large-scale bound-constrained
optimization,” ACM Trans. Math. Softw., vol. 23, no. 4, pp. 550–560,
Dec. 1997.

[37] C. Rother, V. Kolmogorov, and A. Blake, ““GrabCut” — interactive
foreground extraction using iterated graph cuts,” ACM Trans.
Graph., vol. 23, no. 3, pp. 309–314, 2004.

[38] A. Telea, “An image inpainting technique based on the fast
marching method,” JGT, vol. 9, no. 1, pp. 23–34, 2004.

[39] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman, “Patch-
Match: A randomized correspondence algorithm for structural
image editing,” ACM Trans. Graph., vol. 28, no. 3, pp. 24:1–24:11,
Aug. 2009.

[40] Adobe, “Adobe Color CC,” https://color.adobe.com, 2016.
[41] P. Isola, D. Zoran, D. Krishnan, and E. H. Adelson, “Crisp boundary

detection using pointwise mutual information,” in ECCV, 2014, pp.
799–814.

http://doi.acm.org/10.1145/2766980
https://projectnaptha.com/
http://doi.acm.org/10.1145/2988229
http://doi.acm.org/10.1145/2816795.2818070
http://doi.acm.org/10.1145/2816795.2818070
http://dx.doi.org/10.1117/12.912513
http://dx.doi.org/10.1179/sic.2005.50.4.253
http://dx.doi.org/10.1186/2050-7445-2-8
https://color.adobe.com

PIGMENTO: PIGMENT-BASED IMAGE ANALYSIS AND EDITING 14

Jianchao Tan is currently a fifth
year Ph.D. student in the Department
of Computer Science at George Ma-
son University, advised by Dr. Yotam
Gingold. He obtained his B.S. in 2013
from the Electronic Engineering and
Information Science Department at
the University of Science and Tech-

nology of China.

Stephen DiVerdi received his B.S.
from Harvey Mudd College in 2002
and his Ph.D. from the University
of California, Santa Barbara in 2007.
Since then, Stephen has worked at
Adobe and Google on enabling novel
interfaces for digital artwork and
digital experiences, including natural
media painting, automatic image en-

hancement, audio synthesis, and virtual and augmented
reality.

Jingwan Lu joined Adobe Re-
search in 2014. Her current research
interests include deep-learning-based
image editing and generation, sketch-
based search, creative applications
for AR and VR, computational pho-
tography, data-driven artistic content
creation, and other vision, graphics

and machine learning topics.

Yotam Gingold is an assistant pro-
fessor in the Department of Computer
Science at George Mason University,
where he directs the Creativity and
Graphics Lab (CraGL). He received
his Ph.D. from New York University
in 2009. His research interests include
interactive modeling, geometry pro-

cessing, color, and creativity.

	Introduction
	Related Work
	Theory
	Kubelka-Munk Equations
	Problem Formation
	Solution Space

	Method
	Estimating Primary Pigments
	Estimating Mixing Weights

	Results
	Applications
	Masking
	Adjustments
	Recoloring
	Cut, Copy, Paste
	Palette Summarization
	Edge Detection and Enhancement

	Conclusion
	Acknowledgment
	References

